Search results for " reverse electrodialysis"

showing 10 items of 39 documents

CFD prediction of concentration polarization phenomena in spacer-filled channels for Reverse Electrodialysis

2014

Abstract Salinity Gradient Power generation through Reverse Electrodialysis (SGP-RE) is a promising technology to convert the chemical potential difference of a salinity gradient into electric energy. In SGP-RE systems, as in most membrane processes, concentration polarization phenomena may affect the theoretical driving force and thus the performance of the process. Operating conditions, including the feed solution flow rate and concentration and the channels׳ geometrical configuration, may greatly influence both the polarization effect and the pumping energy consumption. The present work uses CFD to investigate the dependence of concentration polarization and pressure drop on flow rate, f…

Pressure dropSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciChemistryAnalytical chemistryFiltration and Separation02 engineering and technologyElectrodialysis021001 nanoscience & nanotechnology7. Clean energyBiochemistry6. Clean waterVolumetric flow rate020401 chemical engineeringChemical physicsReversed electrodialysisOsmotic powerGeneral Materials Science0204 chemical engineeringPhysical and Theoretical Chemistry0210 nano-technologyPolarization (electrochemistry)Current densitySettore ING-IND/19 - Impianti NucleariConcentration polarizationCFD Reverse Electrodialysis concentration polarization spacer-filled channel mixing promoter
researchProduct

A simulation tool for analysis and design of reverse electrodialysis using concentrated brines

2015

Abstract Reverse electrodialysis (SGP-RE or RED) represents a viable technology for the conversion of the salinity gradient power into electric power. A comprehensive model is proposed for the RED process using sea or brackish water and concentrated brine as feed solutions. The goals were (i) reliably describing the physical phenomena involved in the process and (ii) providing information for optimal equipment design. For such purposes, the model has been developed at two different scales of description: a lower scale for the repeating unit of the system (cell pair), and a higher scale for the entire equipment (stack). The model was implemented in a process simulator, validated against orig…

EngineeringSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciGeneral Chemical EngineeringSettore ING-IND/25 - Impianti Chimicisea waterprocess simulator7. Clean energyReversed electrodialysisOsmotic powerProcess engineeringSalinity Gradient PowerPower densitygeographygeography.geographical_feature_categoryBrackish waterbusiness.industryEnvironmental engineeringReverse ElectrodialysiGeneral ChemistryInlet6. Clean waterVolumetric flow ratebrineBrineElectric powerbusinessSalinity Gradient Power; Reverse Electrodialysis; sea water; brine; process simulator; multi-scale modelmulti-scale modelChemical Engineering Research and Design
researchProduct

Experimental assessment of reverse electrodialysis in closed loop configuration fed by NH4HCO3-water solutions

2018

Closed loop reverse electrodialysis is a novel technology for converting low-temperature waste heat into electric energy. This innovative heat engine consists of two units: (i) a reverse electrodialysis unit where power is produced exploiting the concentration difference between a diluted and a concentrated salt solution and (ii) a thermally driven regeneration unit where low-grade waste heat is used to re-establish the original salinity gradient between the two salt solutions. Among all the possible salt solutions suitable as working fluid in such application, Thermolytic salts solutions, in particular Ammonium bicarbonate solutions, may be promising thanks to their characteristic thermall…

Thermolytic salts Ammonium Bicarbonate solutions Reverse electrodialysis Heat Engine.
researchProduct

NH4HCO3–water solutions regeneration in RED closed loop applications

2017

Reverse Electrodialysis (RED) in closed loop arrangement (Reverse Electrodialysis Heat Engine - REDHE) is a promising technology to convert low-grade waste heat into electricity. RED is a membrane process exploiting the salinity gradient between a concentrated and a diluted solution to generate electrical current. Due to the transfer phenomena occurring in the RED unit, the two exiting solutions are partially mixed. Thermal regeneration processes can be used to restore the initial conditions of the two solutions, thus closing the loop. In this regard, ammonium hydrogen carbonate (NH4HCO3) salt solutions are suitable for such applications, being able to decompose at temperatures above 40-45 …

waste heatSalinity Gradient PowerAmmonium bicarbonate RED SGP.Keywords: Reverse Electrodialysis Heat Engine
researchProduct

Reverse electrodialysis heat engine for sustainable power production

2017

Abstract Reverse Electrodialysis Heat Engine (REDHE) is a promising technology to convert waste heat at temperatures lower than 100 °C into electric power. In the present work an overview of the possible regeneration methods is presented and the technological challenges for the development of the RED Heat Engine (REDHE) are identified. The potential of this power production cycle was investigated through a simplified mathematical model. In the first part of the work, several salts were singularly modelled as possible solutes in aqueous solutions feeding the RED unit and the corresponding optimal conditions were recognized via an optimization study. In the second part, three different RED He…

Closed loopSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciThermal efficiencyWork (thermodynamics)Combined cycle020209 energy02 engineering and technologyManagement Monitoring Policy and Law7. Clean energyModellingThermolytic saltlaw.inventionlawWaste heatReversed electrodialysisReverse electrodialysi0202 electrical engineering electronic engineering information engineeringProcess engineeringCivil and Structural EngineeringHeat engineWaste managementbusiness.industryChemistryMechanical EngineeringBuilding and ConstructionClosed loop; Heat engine; Modelling; Power production cycle; Reverse electrodialysis; Thermolytic salts; Civil and Structural Engineering; Building and Construction; Energy (all); Mechanical Engineering; Management Monitoring Policy and LawPower production cycle021001 nanoscience & nanotechnology6. Clean waterPower (physics)Energy (all)General EnergyElectric power0210 nano-technologybusinessHeat engineApplied Energy
researchProduct

Exergy analysis of reverse electrodialysis

2018

Abstract Reverse electrodialysis in closed loop configurations is a promising membrane technology in the energy conversion and storage fields. One of the main advantages of closed-loop reverse electrodialysis is the possibility of using a wide range of operating concentrations, flow rates and different salts for generating the salinity gradient. In this work, an original exergy analysis of the reverse electrodialysis process was carried out in order to investigate reverse electrodialysis performance in terms of energetic and exergetic efficiency parameters in a wide range of operating conditions. A mono-dimensional model of the reverse electrodialysis process was developed, in which all sou…

ExergyWork (thermodynamics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceExergy Analysi020209 energyEnergy Engineering and Power Technology02 engineering and technologyChemical ExergyEfficiencySalinity Gradient Power; Reverse Electrodialysis; Exergy Analysis; Chemical Exergy; Efficiency7. Clean energyMembrane technology020401 chemical engineeringReversed electrodialysis0202 electrical engineering electronic engineering information engineeringSettore ING-IND/10 - Fisica Tecnica IndustrialeEnergy transformation0204 chemical engineeringProcess engineeringSalinity Gradient PowerRenewable Energy Sustainability and the Environmentbusiness.industryReverse Electrodialysi6. Clean waterVolumetric flow rateFuel TechnologyMembraneNuclear Energy and EngineeringExergy efficiencybusiness
researchProduct

REVERSE ELECTRODIALYSIS FOR POWER PRODUCTION FROM OILFIELD WASTEWATERS

2022

Produced waters (PWs) are wastewaters generated by crude-oil extraction processes. They can present very different characteristics depending on the field location and production process. Dispersed oil, dissolved organics and solid particles are usually the main components. Moreover, PWs can contain a very high quantity of dissolved salts 1, with a total dissolved solid (TDS) concentration up to 300 g/L. Each barrel of extracted oil requires the simultaneous extraction of 3 barrels of produced water2 on average. PWs are often discharged into the sea, or sent in evaporation ponds thus leading to a dramatic environment impact3. Reinjection in the extraction well is currently the most common an…

wastewaters valorization produced waters energy production salinity gradient power reverse electrodialysis membrane technology
researchProduct

Pressure drop at low reynolds numbers in woven-spacer-filled channels for membrane processes: CFD prediction and experimental validation

2017

The energy consumption due to pumping power is a crucial issue in membrane processes. Spacers provide mechanical stability and promote mixing, yet increasing pressure drop. Woven spacers and their behaviour at low Reynolds numbers are less studied in the literature. Nevertheless, they are typical of some membrane technologies, as reverse electrodialysis (RED). RED is a promising technology for electric power generation by the chemical potential difference of two salt solutions within a stack equipped by selective ion-exchange membranes. The mechanical energy required for pumping the feed solutions, can dramatically reduce the net power output. In this work computational fluid dynamics (CFD)…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceSettore ING-IND/25 - Impianti Chimici02 engineering and technology010501 environmental sciencesComputational fluid dynamics01 natural sciencessymbols.namesakeReverse electrodialysiMembrane processesLow Reynolds numberPressure dropWoven spacer; Pressure drop; Low Reynolds numbers; CFD; Reverse electrodialysis; Membrane processesWoven spacerSettore ING-IND/19 - Impianti Nucleari0105 earth and related environmental sciencesPressure dropbusiness.industryReynolds numberMechanicsExperimental validation021001 nanoscience & nanotechnologyMembranesymbolsSettore ING-IND/06 - Fluidodinamica0210 nano-technologybusinessCFD
researchProduct

Modelling Reverse Electrodialysis process via Exergy Analysis

2017

Salinity Gradient Power Heat Engines (SGP-HEs) represent a novel technology to convert low grade waste heat into electricity. Reverse Electrodialysis Heat Engine (REDHE) is one of the possible application of this concept, where a common RED unit is coupled with a thermal regeneration unit supplied with waste heat to restore the salinity gradient of the streams to be fed back to the RED unit. In a RED unit, anion and cation exchange membranes (AEMs and CEMs) are alternatively stacked and interposed between salt solutions at different concentration generating an electric potential difference over each membrane along with a selective transport of cations and anions from the concentrated soluti…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/10 - Fisica Tecnica IndustrialeSalinity Gradient Power (SGP) Reverse Electrodialysis (RED) Exergy AnalysiEnergy productions Irreversibility
researchProduct

Reverse Electrodialysis: Applications to Different Case Studies

2018

Salinity gradient is a non-conventional renewable energy form which is widely available worldwide. Reverse Electrodialysis is a promising and innovative technology able to convert directly this chemical renewable energy into electricity. This paper presents a number of different scenarios where salinity gradients are naturally available or they result from industrial/urban activities. A sophisticated model accounting for all the main phenomena (including all the detrimental ones) occurring within a Reverse Electrodialysis unit has been purposely developed. The model is used to calculate how much electric energy can be harvested from the above-mentioned salinity gradients.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryEnvironmental engineering02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnology01 natural sciencesRenewable energySalinityElectric energyReversed electrodialysisMembrane Open-loop RED Reverse Electrodialysis Salinity Gradient PowerEnvironmental scienceElectricity0210 nano-technologybusiness0105 earth and related environmental sciences
researchProduct